高光谱相机在纺织品行业中的应用
发布时间:2023-08-07
浏览次数:709
在纺织工业中,颜色是评价纺织品质量的一个重要特征。目前,基于标准色卡、机器视觉、分光光度计的颜色测量方法在测量精度和效率上都具有一定的局限性。
在纺织工业中,颜色是评价纺织品质量的一个重要特征。目前,基于标准色卡、机器视觉、分光光度计的颜色测量方法在测量精度和效率上都具有一定的局限性。使用标准色卡进行颜色比对时,易受测试人员的主观因素影响,测量效率较低;机器视觉系统中的数码相机无法获取颜色的全部光谱信息,测量精度较低;分光光度计只能获取测量有限孔径内的平均颜色,无法直接对单根纱线、多色织物等纺织品进行直接测量。
针对传统颜色测量方法的局限性,提出了一种基于高光谱成像系统获取纺织品的高光谱图像,再对纺织品颜色进行分割和提取的颜色测量方法,该测量方法能够获取纺织品精细的光谱信息和空间信息,高光谱相机具有更高的测色精度,可以实现单根纱线和多色纺织品的颜色测量。
研究内容如下
高光谱成像的光谱一致性校正∶由于高光谱成像系统与分光光度计在几何结构和测色原理上的差异性,测量的光谱反射率存在不一致的现象。针对这一问题,提出了一种改进的R模型光谱一致性校正算法。算法的思想是,通过偏最小二乘回归从光谱反射率的所有波段中,选择一个具有校正精度最高的波段组合用于光谱一致性校正。实验结果表明,本文提出的算法在改善高光谱成像系统测量光谱一致性问题上优于传统的校正算法。
纱线分割与颜色提取∶针对分光光度计无法直接测量单根纱线颜色的局限性,利用高光谱相机能够获取精细的光谱信息和空间信息,提出了一种基于弗雷歇距离光谱匹配的纱线分割算法。该算法利用背景像素光谱曲线与纱线像素光谱曲线的差异性,通过基于弗雷歇距离光谱匹配的方法分离出背景像素和纱线像素,从而将单根纱线从背景中分割出来。实验结果表明,该算法能够准确地分离出纱线,并在保留纱线边缘信息上优于其他算法。
色织物颜色分割与提取∶针对色织物高光谱图像进行直接分割时存在运算量大的问题,提出了一种基于弗雷歇距离空间变换的色织物颜色分割算法。该算法首先通过弗雷歇距离空间变换后生成灰度图像,然后利用改进的分水岭算法对灰度图像进行分割,最后使用改进的K-均值聚类算法合并过分割区域,从而实现色织物颜色分割。实验结果表明,该算法能够准确地分割出多色织物中不同颜色的区域。
印花织物颜色分割与提取∶由于印花织物含有丰富的颜色和复杂的图案,无法通过人眼直接确定颜色数。针对这一问题,提出了一种基于自组织神经网络(Self-OrganizingMaps Neural Network,SOM)和密度峰值聚类(Density Peaks Clustering,DPC)算法相结合的印花织物颜色分割算法。该算法先利用 SOM 神经网络对数据集进行初始聚类,将具有相似颜色特征的数据划分到同一神经元下,然后利用DPC算法对SOM神经网络输出层的神经元进行更深层次的聚类,最后使用聚类有效性评价指标确定最佳分割颜色数,从而实现印花织物颜色的自动分割。实验结果表明,本文提出的算法在颜色区域分割效果和执行时间上都要优于其他分割算法。
相关产品
-
高光谱知识:高光谱图像处理技术
高光谱图像处理技术是一种集图像与光谱信息于一体的高分辨率技术,广泛应用于航天、农业、食品安全、医学诊断及工业分类质检等领域,展现出强大的应用潜力和价值。..
-
高光谱成像技术方案怎么选择?
探索高光谱成像技术,精准检测水果品质,从源头把控,让每一颗果实都展现最佳风味!..
-
基于多种光学技术的食品无损检测:保障食品安全质量
随着科技的发展,如今有了更先进的食品检测方法,其中基于光学的不同波段检测方法结合光谱技术大放异彩。这些方法包括可见光、红外、太赫兹以及 X 射线等波段的检测,它..
-
高光谱成像技术在纺织品回收分类中的应用
利用高光谱相机对纺织品进行分类以便回收,在众多节约和减少浪费的努力中,纺织品仍然是最大的挑战之一。只有 15% 被回收和再利用,而其余 85% 最终被填埋。纺织..