高光谱成像仪高光谱图像数据的分析方法解析
发布时间:2024-10-18
浏览次数:131
由于高光谱成像仪获取的光谱数据比较的繁冗,为了获得有效的光谱信息,建立预测模型,就需要对光谱数据进行处理,提取有效的信息。本文对高光谱成像仪高光谱图像数据的分析方法做了解析。
由于高光谱成像仪获取的光谱数据比较的繁冗,为了获得有效的光谱信息,建立预测模型,就需要对光谱数据进行处理,提取有效的信息。本文对高光谱成像仪高光谱图像数据的分析方法做了解析。
高光谱图像数据分析技术路线如下图所示。对获取的高光谱图像进行反射率校正后就可以进行处理:
(1)光谱变量提取
在遥感图像处理ENVI(ITT Visual Information Solutions,Boulder,USA)软件中对校正后的高光谱图像选取不包含背景信息的尽可能大的感兴趣区域(Region of Interest,ROI),再提取感兴趣区域内所有像素点的反射率光谱数据,并求得其平均光谱。依次提取所有样本的平均光谱,得到光谱数据矩阵;
(2)图像纹理变量提取
高光谱图像数据立方体可看作是每个波段灰度图像的叠加,这些灰度图像包含样本丰富的空间分布属性。图像纹理反映像素的空间位置和亮度值变化,进而反映样本几何结构的变化。由于高光谱图像有上百个波段图像,不可能提取每个灰度图像的纹理变量,需要先通过主成分分析提取前几个主成分图像的纹理变量,或者先寻找最优特征波长再提取特征波长图像的纹理变量;
(3)光谱数据预处理
预处理可以有效减少系统噪音、杂散光等对成像的影响,从而获取高信噪比、低背景干扰的数据。常用的光谱预处理方法有:平滑、多元散射校正、变量标准化、求导、归一化、基线校正等;
(4)特征波长提取
通过选择特征波长,以降低光谱数据的维数及共线性问题,有效特征波长不仅能代表被测样本的特征,还能大大简化回归或分类运算。常用的特征波长提取方法有:回归系数法、载荷系数法、连续投影算法、无信息变量消除、遗传算法、竞争性自适应重加权算法、Random Frog等;
(5)回归或分类模型的建立
用提取的特征波长光谱和纹理变量建立回归或分类模型。分类模型是判断样本的种类或类型,是定性分析。回归模型需要组分的含量信息,是定量分析。常用的化学计量学方法有:主成分分析、主成分回归、多元线性回归、偏最小二乘法、人工神经网络、最小二乘支持向量机、高斯过程等;
(6)图像后处理和可视化
通过在MATLAB(The Math Works,Natick,USA)或IDL(ITT Visual Information Solutions,Boulder,USA)软件中编写图像处理程序,将模型预测的量化结果以伪彩图的形式展示,实现参数空间分布的可视化。
相关产品
-
高光谱知识:高光谱图像处理技术
高光谱图像处理技术是一种集图像与光谱信息于一体的高分辨率技术,广泛应用于航天、农业、食品安全、医学诊断及工业分类质检等领域,展现出强大的应用潜力和价值。..
-
高光谱成像技术方案怎么选择?
探索高光谱成像技术,精准检测水果品质,从源头把控,让每一颗果实都展现最佳风味!..
-
基于多种光学技术的食品无损检测:保障食品安全质量
随着科技的发展,如今有了更先进的食品检测方法,其中基于光学的不同波段检测方法结合光谱技术大放异彩。这些方法包括可见光、红外、太赫兹以及 X 射线等波段的检测,它..
-
高光谱成像技术在纺织品回收分类中的应用
利用高光谱相机对纺织品进行分类以便回收,在众多节约和减少浪费的努力中,纺织品仍然是最大的挑战之一。只有 15% 被回收和再利用,而其余 85% 最终被填埋。纺织..