020-8288 0288

基于高光谱成像技术的高光谱图像数据降维方法

发布时间:2024-11-01
浏览次数:55

高光谱数据是一个三维数据块,这个三维数据块包含很多的光谱信息,使得三维数据块之间存在大量冗余信息,可能影响建模结果。因此,在进行预测模型之前,需要对光谱图像数据进行降维处理。本文对高光谱图像数据降维方法做了介绍。

高光谱数据是一个三维数据块,这个三维数据块包含很多的光谱信息,使得三维数据块之间存在大量冗余信息,可能影响建模结果。因此,在进行预测模型之前,需要对光谱图像数据进行降维处理。本文对高光谱图像数据降维方法做了介绍。

高光谱三维立体图像

高光谱数据是一个三维数据块,不仅可以提取每个像元的光谱信息,而且每个波长都对应一幅灰度图像。但是,对于分辨率较高的高光谱数据,每个数据块就包含上百幅图像信息,数据量过大,会降低后期的数据处理速度,并且波段较多,光谱信息之间相关性很强,使得三维数据块之间存在大量冗余信息,可能影响建模结果。因此,在数据处理过程中,高光谱数据的降维是减小噪声,提高模型识别速率和识别准确率的有效手段。


1.主成分分析(PCA)

主成分分析(PCA)是被较多应用的一种数据降维方法。PCA变换是将有相关性的原始变量沿协方差最大的方向投影,使经过坐标变换的高维空间数据映射到低维空间,得到线性不相关的新变量,即主成分。主成分按照方差从大到小的顺序依次称为第一主成分(PC1)、第二主成分(PC2),以此类推。原始高光谱数据经过PCA变换,可以看作各个主成分图像的线性组合,主成分图像所占原始图像信息的比重由方差贡献率决定。一般,当主成分的累计贡献率达到一定比例,如85%以上,即可解释大部分高光谱数据信息。因此,经过PCA变换的高光谱数据仅需少量主成分就可以极大程度上表征原始信息,大大减少了数据处理时间,并消除原始数据之间冗余的信息。


2.最小噪声分离变换(MNF)

对于高光谱数据降维,最小噪声分离变换(MNF变换)的主要目的在于分离高光谱数据的信号和噪声,提高信噪比。该算法可以看作是两次主成分变换的叠加。首先,基于图像噪声的协方差矩阵进行正向变换,然后,对多维图像去相关、重定标。变换之后的数据关联到两个部分:一个部分是较大特征值,及其特征图像;另一个部分则是较小特征值,及其噪声图像。特征值的大小决定特征图像的信噪比高低,用来确定有效的特征图像。最后,正向变换后确定的图像子集被作标准主成分变换,恢复为对应的原始图像。MNF将噪声比例大的图像排除,使有效的高光谱数据量大幅度上涨。

联系我们

Contact us
广东赛斯拜克技术有限公司
  • 地址:广州市增城区新城大道400号智能制造中心33号楼601
  • 电话:020-8288 0288   13500023589
  • 邮箱:3nh@3nh.com
  • 网址:http://www.sinespec.cn
Copyright © 2024 广东赛斯拜克技术有限公司 版权所有
  • 公司联系方式
    QQ
  • 网站首页
    首页
  • 公司联系电话
    电话
  • 返回
    返回顶部