高光谱成像仪光谱数据的预处理方法有哪些?
发布时间:2023-11-30
浏览次数:532
高光谱成像仪在采集数据的过程中容易受到类似仪器性能、样本背景、电噪音等因素的影响,这导致获得的光谱信号受噪音的干扰。所以,在得到所有样品的原始光谱以后,需要对其进行预处理来提高光谱数据的信噪比,这也是为了更高效地挖掘光谱数据仅为保证预测模型的精度、稳定性和可靠性。那么,高光谱成像仪光谱数据的预处理方法有哪些?
高光谱成像仪在采集数据的过程中容易受到类似仪器性能、样本背景、电噪音等因素的影响,这导致获得的光谱信号受噪音的干扰。所以,在得到所有样品的原始光谱以后,需要对其进行预处理来提高光谱数据的信噪比,这也是为了更高效地挖掘光谱数据仅为保证预测模型的精度、稳定性和可靠性。那么,高光谱成像仪光谱数据的预处理方法有哪些?
S-G平滑处理法:
噪声常常干扰光谱信号,也容易在建立模型时产生过拟合的现象。平滑处理通过对平滑点周边一定窗口大小范围内的数据点进行平均或拟合处理,可以求得平滑点的最佳估计值。这样就减少了噪声对数据点的干扰,提高了信噪比。常用的平滑处理包括移动平均平滑法和卷积平滑法,卷积平滑法基于最小二乘拟合的系数来建立滤波函数,对移动窗口内的光谱进行最小二乘多项式拟合。因此与简单的平均计算相比,该算法具有较大的优势。
多元散射校正处理法:
多元散射校正能够有效消除散射的影响,进而增强和成分含量对应光谱的吸收信息。该算法首先需要建立待测样品的“理想光谱”,即光谱的变化值与样品的成分含量满足线性关系。然后,基于该“理想光谱”对其他样品的光谱进行修正。可实际应用中,获取“理想光谱”非常困难,所以常常取所有样品光谱的平均值来近似代替。相应的算法步骤如下:
(1)根据最小二乘法确定α和β值,把所有待测样品的光谱A(λ)变换成假想的基准粒度光谱A0(λ)。假设这两个参数的推定值为α'和β',根据公上式变换可得到下式:
(2)基于整体样品的平均光谱值求得α'和β'的基准粒度光谱,如下式所示:
(3)线性回归方程:
式中A表示校正集光谱数据矩阵,Ai表示第i个样品的光谱,通过最小二乘回归算法求得α和β。通过调整α和β,既可以减小光谱的差异性,又尽可能保留了原始光谱中和样品成分含量相关的有效信息。因此该算法大大提高了光谱的信噪比。
变量标准化处理方:
变量标准化可以用来校正样品间由于散射引起的光谱误差。由于每条光谱其波长点的吸光度符合一定的分布(比如正态分布),该算法每一条原始光谱值进行标准正态化处理,处理后的光谱数据均值为0,标准差为1。计算式为:Zi=(xi-μ)/σ。
式中,xi为原始光谱的吸光度,μ为所有光谱的平均值,σ为原始光谱的标准偏差。由于该算法是对每条光谱数据进行单独校正,因此对于样品间差异较大的光谱数据,采用变量标准化算法对其进行预处理十分有效。
相关产品
-
凝视式高光谱成像仪原理、结构组成及优缺点
凝视式高光谱成像仪是高光谱成像领域的一种重要设备,它通过特殊的光学设计和分光技术,将目标场景的光线聚焦到面阵探测器上,探测器上的每个像元对应目标场景中的一个微小..
-
摆扫式高光谱成像仪原理、结构组成及优缺点
摆扫式高光谱成像仪是高光谱成像领域中一种较为常见的设备,其通过摆动反射镜或光学系统,将目标场景的光线依次反射到探测器上,从而获取不同角度的图像信息。本文对摆扫..
-
推扫式高光谱成像仪原理、结构组成及优缺点
推扫式高光谱成像仪利用线阵探测器在垂直于飞行或平台移动方向上获取目标的一行图像信息,同时平台沿着飞行方向前进,通过连续的线扫描逐渐获取整个目标区域的二维图像信..
-
高光谱成像分析在工业检测的应用
高光谱成像及分析已在国内外工业生产中广泛应用,其对当前无法实现的物质分选任务及瑕疵检测能力,是融合机器视觉的新型解决方案。..