高光谱成像技术的发展趋势如何?
发布时间:2023-12-01
浏览次数:570
近年来,高光谱成像技术由于其拥有超多波段、超高的光谱分辨能力和图像与光谱合一的优点,运用高光谱成像技术对样本进行无损检测和识别是很好的选择,可达到快速、无损的精确性和高效性。本文对高光谱成像技术的发展趋势做了介绍。
近年来,高光谱成像技术由于其拥有超多波段、超高的光谱分辨能力和图像与光谱合一的优点,运用高光谱成像技术对样本进行无损检测和识别是很好的选择,可达到快速、无损的精确性和高效性。本文对高光谱成像技术的发展趋势做了介绍。
高光谱成像技术的原理:
高光谱成像技术是将早前的二维成像技术和光谱技术适机的综合起来的一项新技术,它的原理是利用电磁波谱对被测物的特性以成像形式表现出来,然后对被测物的光谱特性进行研究,高光谱成像技术的是以多光谱成像技术为基础,从紫外到近红外(200-2500nm)的光谱范围内,运用成像光谱仪对目标物体连续成像,每幅高光谱图像都包括光谱覆盖范围内的数十甚至数百条光谱波段。
当有入射光作用在待测物表面时,其中只有少数光能量被待测物表面反射掉和部分光能量发生镜面反射等现象外,剩余的光能量进入到待测物内部发生光的吸收和漫反射现象。光的吸收主要与待测物本身所含有的化学成分有关,而光的漫反射主要与待测物的结构和物理性质有关。最终可以获得待测物空间图像和待测物体的光谱信息,如下图所示,其中的二维空间矢量矩阵代表了该像素点的光谱信息。高光谱成像技术拥有超多波段、高的光谱分辨能力、波段窄、光谱范围广和图谱合一等特点。
高光谱成像技术的发展趋势:
1.宽光谱范围:
地质、矿产勘探是高光谱技术主要的应用领域之一,红外波段的高光谱成像是重要组成部分。在波长0.4~2.5μm范围内,高光谱成像仪只能辨别很少一部分矿物,岩矿信息提取受到限制。而热红外波段光谱成像能够很容易区分识别硅酸盐、硫酸盐、碳酸盐、磷酸盐、氧化物、氢氧化物等矿物。另外热红外波段的发射率光谱混合具有线性混合的特点,一定程度上解决了光谱非线性混合难题。紫外谱段的高光谱成像,能够有效辨别NO2、SO2等污染气体,在污染监测方面发挥重要作用。因此,宽光谱范围是高光谱成像技术的发展方向之一,能够有效解决因为谱段覆盖不全而引起的目标分辨的问题,并满足在不同谱段范围内的观测要求。
2.高分辨率
高光谱成像仪的分辨率包括空间分辨率与谱段间隔,不同的应用目标对于分辨率的要求是不同的。但目前的高光谱成像技术的分辨率并不能满足所有的应用需求,例如军事领域对于空间分辨率的要求往往很高,而在大气监测和水资源检测等领域则需要满足高谱段间隔的要求。
3.多传感器融合
多传感器融合即是将高光谱成像仪与全色相机、多光谱成像仪等仪器相结合,共用同一个望远系统,例如目前国际上多采用两个光谱仪共用同一望远系统的方案。这样可以针对同一目标,获取多种图像数据并进行比对,系统结构更加紧凑,可以更好的发挥高光谱成像技术的优势。
相关产品
-
凝视式高光谱成像仪原理、结构组成及优缺点
凝视式高光谱成像仪是高光谱成像领域的一种重要设备,它通过特殊的光学设计和分光技术,将目标场景的光线聚焦到面阵探测器上,探测器上的每个像元对应目标场景中的一个微小..
-
摆扫式高光谱成像仪原理、结构组成及优缺点
摆扫式高光谱成像仪是高光谱成像领域中一种较为常见的设备,其通过摆动反射镜或光学系统,将目标场景的光线依次反射到探测器上,从而获取不同角度的图像信息。本文对摆扫..
-
推扫式高光谱成像仪原理、结构组成及优缺点
推扫式高光谱成像仪利用线阵探测器在垂直于飞行或平台移动方向上获取目标的一行图像信息,同时平台沿着飞行方向前进,通过连续的线扫描逐渐获取整个目标区域的二维图像信..
-
高光谱成像分析在工业检测的应用
高光谱成像及分析已在国内外工业生产中广泛应用,其对当前无法实现的物质分选任务及瑕疵检测能力,是融合机器视觉的新型解决方案。..