高光谱成像仪高光谱图像数据几种处理方法
发布时间:2024-04-12
浏览次数:370
随着光学成像技术和探测器技术的不断发展,高精密的光学仪器高光谱成像仪被广泛的应用于不同的行业,它将传统光谱仪的二维成像与光谱技术有机的融为一体,可以完整、无损地同时获取被测物的空间信息和光谱信息。本文对高光谱成像仪高光谱图像数据的处理方法作了介绍。
随着光学成像技术和探测器技术的不断发展,高精密的光学仪器高光谱成像仪被广泛的应用于不同的行业,它将传统光谱仪的二维成像与光谱技术有机的融为一体,可以完整、无损地同时获取被测物的空间信息和光谱信息。本文对高光谱成像仪高光谱图像数据的处理方法作了介绍。
高光谱图像数据的一般处理流程如下图所示,基于高光谱图像图谱合一的特点,高光谱图像数据的分析方法可分为以下几个步骤:
1.样品制备与图像获取
首先,需要制备研究样品。制备过程中,不仅要考虑含量的影响还要考虑成分等其他因素对图像获取的影响。样品制备完成后,进行图像的获取。将样品放在载物台上并进行扫描,进而得到特定方向的线性子图像,随后移动载物台获取另一方向的线性子图像,从而得到三维原始高光谱图像。这样就记录了图像的多个波带。
2.图像预处理
原始高光谱图像记录的数据是光子强度信息,需要进行反射校正才可获取相对反射率。还需要对感兴趣区进行选择,随之进行图像的分割,进而对目标区进行隔离和定位;最后再进行光谱数据的提取。然而从样品高光谱图像的目标区的所有像素反射率的值中,只能获得一个平均频谱,因此,需重复相同的程序,得到所有测试样品的高光谱图像的光谱,将所得到的每个样品的频谱进行整合,得到一个光谱矩阵。此外,还可以通过合并、裁剪等方法对数据量极大地高光谱图像进行处理以减少无用信息的影响进而提高处理效率。
3.光谱分析
光谱分析的核心就是特征模型的建立。在光谱维,首先利用主成分分析、偏最小二乘回归等方法对全波段进行预测,之后利用偏最小二乘回归模型产生的回归系数进行特征波段的选择。在图像维,可采用数字图像处理的技术对所得图像进行有效的分割与处理从而获取目标,提取特征参数建立相关的模型,选取回归系数绝对值的最高值所对应的波段为特征波段,随后在特征波段中对模型进行预测,即利用选择的特征波段来建立多元线性回归模型,最后,再利用回归系数、交叉验证的均方根误差等参数对模型进行评估。
4.图像分析
高光谱图像中的每个像素都有自己的光谱,在每个样本的像素中,可以通过计算出化学成分的浓度等参量来生成预测图。由于精确测量每个像素是极其困难,因此可以借助回归模型来实现。最终建立组分含量分布图像或分类图像,展示隐藏的信息,进而对样品进行分析检测。
相关产品
-
高光谱知识:高光谱图像处理技术
高光谱图像处理技术是一种集图像与光谱信息于一体的高分辨率技术,广泛应用于航天、农业、食品安全、医学诊断及工业分类质检等领域,展现出强大的应用潜力和价值。..
-
高光谱成像技术方案怎么选择?
探索高光谱成像技术,精准检测水果品质,从源头把控,让每一颗果实都展现最佳风味!..
-
基于多种光学技术的食品无损检测:保障食品安全质量
随着科技的发展,如今有了更先进的食品检测方法,其中基于光学的不同波段检测方法结合光谱技术大放异彩。这些方法包括可见光、红外、太赫兹以及 X 射线等波段的检测,它..
-
高光谱成像技术在纺织品回收分类中的应用
利用高光谱相机对纺织品进行分类以便回收,在众多节约和减少浪费的努力中,纺织品仍然是最大的挑战之一。只有 15% 被回收和再利用,而其余 85% 最终被填埋。纺织..