高光谱成像仪光谱数据的预处理方法
发布时间:2024-05-17
浏览次数:244
高光谱成像仪采集到的三维高光谱数据中的光谱信息除了含有有用的信息外,还含有其他大量的随机噪声和与样本性质无关的信息,这些因素都会对光谱信息产生一定的干扰,甚至会影响所建模型的性能和预测效果。因此,就需要对光谱信息进行预处理。本文对高光谱成像仪光谱数据的预处理方法作了介绍。
高光谱成像仪采集到的三维高光谱数据中的光谱信息除了含有有用的信息外,还含有其他大量的随机噪声和与样本性质无关的信息,这些因素都会对光谱信息产生一定的干扰,甚至会影响所建模型的性能和预测效果。因此,就需要对光谱信息进行预处理。本文对高光谱成像仪光谱数据的预处理方法作了介绍。
通过对光谱信息进行有效的预处理可以减弱甚至消除其他与样本性质无关的信息对光谱信息的影响,为后续建立预测精度高、稳健性好的分类判别模型奠定基础。目前,常用的预处理方法有变量标准化算法、多元散射校正算法、导数算法、基线校正、平滑算法和去趋势法等。
1.变量标准化算法(SNV)
变量标准化(Standard Normalized Variate,简称SNV)主要是用来消除由光散射所引起的光谱误差。SNV校正认为,在每一条光谱中各波长点的吸光度值应满足一定的分布规律。在这一假设的前提下,SNV是在原始光谱减去该条光谱曲线的平均光谱值,然后除以该条光谱曲线的标准偏差,其实质是使原始光谱数据标准正态化处理。
2.附加散射校正算法(MSC)
附加散射校正(Multiplicative Scatter Correction,简称MSC)是由Geladi等人提出,其主要目的是通过消除因颗粒大小及颗粒分布不均匀产生的散射影响,增强与成分含量相关的光谱吸收信息,并获得较“理想”的光谱。MSC方法认为,每一条光谱都应该与“理想”的光谱成线性关系,但真正“理想”的光谱是无法得到,所以一般用校正集的平均光谱来近似。即,每个样品的任意波长点下的反射吸光度值与其平均光谱的相应吸光度的光谱是近似线性关系,而且可以通过光谱集线性回归获得该直线的截距和斜率,并用来校正每条光谱。截距大小可以用来反应样品独特反射作用,而斜率大小则用来反映样品的均匀性。
3.平滑算法(Smoothing)
由光谱仪采集到的光谱信息中常常叠加着很多的随机误差,而平滑算法是常用来消除噪声的方法。其基本思路是通过多次选取平滑点前后的特定点进行平均或拟合来降低噪声,从而提高信噪比。常用的平滑方法有:Savitzky-Golay卷积平滑法、移动平均平滑法和指数平均平滑。
4.去趋势法(De-trending)
去趋势算法(De-Trending)一般可以用于消除经SNV处理后的光谱的基线漂移,也可以单独使用。该算法比较直接,先按多项式将光谱xi的吸光度和波长拟合出一条趋势线di,再从原始光谱中减掉趋势线(xi-di)。经过去趋势法处理后,其波峰和波谷的特征更加明显。
5.基线校正(Baseline)
在光谱分析中,由于样品自身的不均性、仪器背景或其他因素等影响,导致所测样品的谱图经常会出现倾斜或漂移现象,若不加处理,会影响校正模型的性能和对未知样品预测结果的准确性。
相关产品
-
高光谱知识:高光谱图像处理技术
高光谱图像处理技术是一种集图像与光谱信息于一体的高分辨率技术,广泛应用于航天、农业、食品安全、医学诊断及工业分类质检等领域,展现出强大的应用潜力和价值。..
-
高光谱成像技术方案怎么选择?
探索高光谱成像技术,精准检测水果品质,从源头把控,让每一颗果实都展现最佳风味!..
-
基于多种光学技术的食品无损检测:保障食品安全质量
随着科技的发展,如今有了更先进的食品检测方法,其中基于光学的不同波段检测方法结合光谱技术大放异彩。这些方法包括可见光、红外、太赫兹以及 X 射线等波段的检测,它..
-
高光谱成像技术在纺织品回收分类中的应用
利用高光谱相机对纺织品进行分类以便回收,在众多节约和减少浪费的努力中,纺织品仍然是最大的挑战之一。只有 15% 被回收和再利用,而其余 85% 最终被填埋。纺织..