高光谱图像数据的分析处理方法介绍
发布时间:2024-05-24
浏览次数:260
高光谱图像数据往往会含有大量的冗余信息,为了提取有效的光谱信息,就需要对获取的图像数据进行处理,以保证预测模型建立的准确性。本文对高光谱图像数据的分析处理方法做了介绍。
高光谱图像数据往往会含有大量的冗余信息,为了提取有效的光谱信息,就需要对获取的图像数据进行处理,以保证预测模型建立的准确性。本文对高光谱图像数据的分析处理方法做了介绍。
高光谱图像预处理:
高光谱图像因其携带大量的数据信息,增强了技术的检测能力,同时也增大了信息的冗余量,因此在预处理阶段的主要目的即对立体数据进行降维处理。在保存感兴趣特征的同时减少数据信息量,降低处理信息的时长与难度同时增强数据分析的精确度。目前,较为普遍的高光谱图像预处理方法有特征选择和特征提取两种方法。
特征选择是指从最初波段中直接选取有效的特征波段,达到降低数据维度的目的。特征提取是指通过对一个或若干个原始波段的属性关系进行组合变换,得到新的特征属性。光谱信息的冗余量与相关性取决于波段的宽窄度,因而选取最优波段是图像降维度过程的关键要素。实际检验鉴定中常通过多种降维方法交叉结合使用,来达到最佳的检验结果。如基于主成分分析、基于高阶统计量的独立元分析、最小噪声分离变换、傅里叶变换、基于核函数和基于神经网络的非线性特征分析等。
数据特征分析:
根据检材在光谱图中的不同特性信息反映,选取不同分类模型对不同类别的待测目标进行分类。使用计算机分析处理作为辅助方法,弥补鉴定人员的视觉鉴别传统方法的不足,如最大似然比分类、卷积神经网络分类方法等等。作为机器学习方法之一的监督学习,通过对已知标签的特征进行提取学习,构造训练函数完成对未知样本的分类检验任务,如K近邻法、马氏距离分类、最大似然法、最小距离法、光谱角分类法等等。另一种非监督分类则是直接对光谱信息进行特征提取,统计差别进行分类,如K-均值、ISODATA(迭代自组织数据分析)等。对高光谱图进行数据分析的过程中,通过总体分类精度对分类方法进行评价,选择最有效的分类方法而获得最佳结果。
相关产品
-
高光谱知识:高光谱图像处理技术
高光谱图像处理技术是一种集图像与光谱信息于一体的高分辨率技术,广泛应用于航天、农业、食品安全、医学诊断及工业分类质检等领域,展现出强大的应用潜力和价值。..
-
高光谱成像技术方案怎么选择?
探索高光谱成像技术,精准检测水果品质,从源头把控,让每一颗果实都展现最佳风味!..
-
基于多种光学技术的食品无损检测:保障食品安全质量
随着科技的发展,如今有了更先进的食品检测方法,其中基于光学的不同波段检测方法结合光谱技术大放异彩。这些方法包括可见光、红外、太赫兹以及 X 射线等波段的检测,它..
-
高光谱成像技术在纺织品回收分类中的应用
利用高光谱相机对纺织品进行分类以便回收,在众多节约和减少浪费的努力中,纺织品仍然是最大的挑战之一。只有 15% 被回收和再利用,而其余 85% 最终被填埋。纺织..