红肉质量高光谱无损检测研究
发布时间:2024-06-20
浏览次数:285
红肉质量是反映其新鲜程度的固有属性,可分类为由感官评价获取的外在属性和需要化学测量的内在属性。
红肉质量表征形式
红肉质量是反映其新鲜程度的固有属性,可分类为由感官评价获取的外在属性和需要化学测量的内在属性。羊肉的品质变化究其根本是由微生物引起的,羊肉的肌肉组织一般是无菌的,由于外部污染导致微生物接种到羊肉组织并开始繁殖,由此构成了羊肉的微生物特性。在微生物和酶的共同作用下,使蛋白质和脂肪等营养物质逐渐分解,进而引起酸碱度属性变化并产生对人体健康有害的化学成分,由此构成了羊肉的化学特性。营养物质流失和有害物质积累等内在特性的变化会以定的外在形式表现出来,例如肌红蛋白的氧化会引起肉色的变化、蛋白质的分解会导致羊肉质地瘫软,由此构成了羊肉的物理特性,如图1所示。
高光谱成像技术特点
高光谱成像技术是种基于多窄波段的图像数据技术,获取目标的二维图像和以维光谱,形成连续、窄波段的图像数据。
1. 高光谱成像技术优点
高光谱成像不仅具备图像和光谱技术的无损、高通量、快速等检测特点,还具有如下特点:
(1)图谱合一。高光谱成像技术同时获取目标的图像和光谱,可更加全面、有效、准确的描述目标外在特征(形状、色泽等)和内在特征(物理结构、化学成分)。融合红肉的光谱和图像特征构建多源信息的红肉质量无损检测模型,可以克服单一特征受噪声影响而导致的模型性能差等问题。
(2)分辨率高。高光谱相机覆盖波段范围广,可从可见光波段延伸到中红外波段,形成条近似连续的曲线,分辨率小于10nm。较高的分辨率可以提高高光谱技术获取红肉质量信息的能力[。
(3)模型多样。基于高光谱图谱合特性进行多样化建模,可应用于目标的外在特征感知、成分定量预测、质量安全评估等研究,使得数据的分析和处理更加灵活、方便。
2. 高光谱成像技术局限性
高光谱成像技术作为种新兴的数据获取技术,目前也存在诸多问题有待进一步优化,具体如下:
(1)冗余度高。高光谱数据是由二维图像和维光谱组成的三维数据,体量较大;相邻波段相关性强,同时包含背景等无用信息,导致高光谱数据的冗余程度较高。对于特定的目标,高光谱大体量的数据会掩盖目标特征信息,不利于快速分析和识别目标参数。
(2)信噪比低。由于技术的不成熟,目前高光谱相机采集信息的信噪比较低,对光谱预处理算法的要求相对较高。
(3)非线性强。高光谱数据的非线性主要来源于光源照射样品后的反射过程和反射光在空气中的传播过程,这要求采用更复杂的非线性模型进行处理。
红肉质量高光谱无损检测机理
光谱检测目标主要为含氢基团的化合物及其衍生性质,例如TVB-N主要结构为N一H基团,而色泽等属性特征则是肌红蛋白氧化基团的衍生表现。可见/近红外光谱可有效记录C一H,O一H和N-H等含氢基团的基频、倍频及合频吸收的相关信息,当采用连续的可见/近红外光照射红肉样品时,样品会选择性的吸收与基团发生共振波段的光,通过采集样品漫反射的可见/近红外光谱就可以实现样品化学成分和物理结构的定性定量分析。
相关产品
-
高光谱知识:高光谱图像处理技术
高光谱图像处理技术是一种集图像与光谱信息于一体的高分辨率技术,广泛应用于航天、农业、食品安全、医学诊断及工业分类质检等领域,展现出强大的应用潜力和价值。..
-
高光谱成像技术方案怎么选择?
探索高光谱成像技术,精准检测水果品质,从源头把控,让每一颗果实都展现最佳风味!..
-
基于多种光学技术的食品无损检测:保障食品安全质量
随着科技的发展,如今有了更先进的食品检测方法,其中基于光学的不同波段检测方法结合光谱技术大放异彩。这些方法包括可见光、红外、太赫兹以及 X 射线等波段的检测,它..
-
高光谱成像技术在纺织品回收分类中的应用
利用高光谱相机对纺织品进行分类以便回收,在众多节约和减少浪费的努力中,纺织品仍然是最大的挑战之一。只有 15% 被回收和再利用,而其余 85% 最终被填埋。纺织..