多光谱成像原理结构详细介绍
发布时间:2023-05-11
浏览次数:626
多光谱成像是一种光谱成像方法,用于获取至少几个以上的光谱通道所对应的图像,有时甚至可以超过十个。
多光谱成像是一种光谱成像方法,用于获取至少几个以上的光谱通道所对应的图像,有时甚至可以超过十个。使用的光谱区域通常至少部分超出可见光谱范围,覆盖部分红外和紫外线区域。多光谱成像仪可以提供包括近紫外、红光、绿光、蓝光、近红外光、中红外光和远红外光在内的波长,有时还可以进行热成像来检测热辐射。
一般而言,彩色摄影可视为多谱段成像手段之一,但多谱段成像设备常提供互不重叠的多个波长通道,通常数量为三个以上。需注意。虽然一些多光谱成像设备(也称为多光谱相机)用于空间卫星和飞机(见下文),但也有手持设备以及安装在工业环境中的成像设备。多光谱相机通常针对特定应用进行定制,特别是关于使用的光谱波段。
多光谱图像传感器
当需要运用有限数量的波长通道,比如5或8时,可使用一种图像传感器。该传感器在每个像素上都配有多个光电探测器,每个波长通道都对应一个探测器。这种传感器的设计与照相机中使用的RGB传感器相似。虽然这种工作原理导致简单的光学设置,但它有一些局限性:
一个需要根据所需的光谱通道使用专门的图像传感器。
每个光电探测器覆盖一定区域,相应波长区域之外的所有光都丢失。这意味着在灵敏度方面存在劣势,特别是当波长通道的数量变大时。
当成像系统需要覆盖非常宽的光谱区域时,可能很难获得高性能。
在这些地区,这种技术方法不是很普遍。
用于光谱扫描的高光谱相机
高光谱相机通过在具有宽带响应的传统相机上增加高光谱,可以实现光谱扫描。这种轮包含多个光学带通滤光片,用于选择不同的波长区域。可以连续不断地旋转,或者可以通过计算机控制,在每次运行时随机选择一个过滤器。这种技术方法的优点在于,能够根据实际应用轻松选择适当的过滤器。
相机或图像传感器的组合
可以采用相机的组合,例如一个用于可见光(具有3或4个通道)和一个或多个红外相机。每个相机都可以配备带通滤光片,以将灵敏度限制在某个光谱区域。然后,每个光学系统都可以针对相关光谱区域进行优化,并且需要不太专业的图像传感器。这项技术的缺陷是需要使用多个摄像头,并且必须确保捕获的图像有良好的空间重叠度(这对于近距离的物体尤其困难)。
一种混合的方法是采用通用光学器件处理所有波长,但在将光线送入多个图像传感器前,需将不同波长的通道分开。
扫描仪器
还可以采用扫描成像仪的原理,这最常用于高光谱成像。 最常见的方法是使用图像平面中的光学狭缝仅沿线选择图像信息,并在垂直于该线的方向上分散不同的波长分量。 需要通过组合相机、狭缝或物体不同方向的记录来组装完整的图像。 不一定在光谱色散方向上为每个像素分配一个光谱箱,而是根据所需的光谱通道组合多个像素。
线扫描的原理通常用于飞机和卫星等移动物体中的仪器;随后对垂直于飞行方向的一条线进行记录就足够了,并将它们组装起来以获得完整的图像,这些图像可以覆盖大的细长区域。 同样,固定式扫描仪器用于检测工业工厂传送带上的物体。
也可以使用点扫描,其优点是可以使用简单的光谱仪,例如声光可调谐滤波器。 但是,这会导致采集时间暂时更长,运动伪影更强。
相关产品
-
凝视式高光谱成像仪原理、结构组成及优缺点
凝视式高光谱成像仪是高光谱成像领域的一种重要设备,它通过特殊的光学设计和分光技术,将目标场景的光线聚焦到面阵探测器上,探测器上的每个像元对应目标场景中的一个微小..
-
摆扫式高光谱成像仪原理、结构组成及优缺点
摆扫式高光谱成像仪是高光谱成像领域中一种较为常见的设备,其通过摆动反射镜或光学系统,将目标场景的光线依次反射到探测器上,从而获取不同角度的图像信息。本文对摆扫..
-
推扫式高光谱成像仪原理、结构组成及优缺点
推扫式高光谱成像仪利用线阵探测器在垂直于飞行或平台移动方向上获取目标的一行图像信息,同时平台沿着飞行方向前进,通过连续的线扫描逐渐获取整个目标区域的二维图像信..
-
高光谱成像分析在工业检测的应用
高光谱成像及分析已在国内外工业生产中广泛应用,其对当前无法实现的物质分选任务及瑕疵检测能力,是融合机器视觉的新型解决方案。..