什么是光谱成像技术?光栅光谱仪的成像原理是怎样的?
发布时间:2023-05-26
浏览次数:640
什么是光谱成像技术?高光谱成像技术是近四十年来才发展起来的一种全新的遥感成像技术,它具有超多波段、高光谱分辨率、波段窄、光谱范围广和图谱合一等特点,被广泛的应用于地质学、植被科学、农业等各个领域。本文对光栅光谱仪的成像原理做了简要的介绍。
什么是光谱成像技术?高光谱成像技术是近四十年来才发展起来的一种全新的遥感成像技术,它具有超多波段、高光谱分辨率、波段窄、光谱范围广和图谱合一等特点,被广泛的应用于地质学、植被科学、农业等各个领域。本文对光栅光谱仪的成像原理做了简要的介绍。
光谱成像技术的概述:
光谱成像是一门结合了设计、制造、评估和仪器应用的艺术和科学。它能够同时捕捉场景中具有高分辨率的空间和光谱特性,用来对场景中物体进行检测、分类、识别和表征。现行的采用光学技术开发的用于捕获高光谱图像的传感器包括:色散棱镜或光栅分光光谱仪、迈克尔逊傅立叶变换光谱仪、空间傅立叶变换光谱仪、扫描Fabry-Perot标准具、声光可调滤光片和介质滤波器。在机载或天基平台实现光谱成像时最常见的是使用色散成像光谱仪,它可以将光谱信息沿着二维的探测器阵列的一个方向进行映射。在任何一个时间点,光谱仪都会同时收集多个波长的光线构成场景的单个空间切片的一帧,然后通过扫描和收集多个帧来扩展另一个空间维度。棱镜式色散光谱仪可以用于反射和发射光谱区域的空中操作,如下图所示。
光栅光谱仪的成像原理:
典型的光栅光谱仪的原理如下图所示。光源从远处(图中的左边)首先由成像透镜组件聚焦以在狭缝平面上形成图像。狭缝是一个不透明的表面,它将,阻挡除了高为一个像素,宽为n个像素的矩形区域外的一切光线,该表面通过三个反射镜再次成像到二维的探测器阵列上,使得狭缝的高度与探测器元件尺寸匹配,狭缝宽度与探测器阵列宽度匹配。如果不考虑其他因素,则二维的探测器阵列只会生成穿过狭缝场景的部分线性图像。然而,光谱仪还包括一个在中间镜表面的闪耀光栅进行衍射,将光分散在所示的探测器阵列上。因此形成了穿过该阵列的这个维度入口狭缝中的每个空间位置的光谱。
在得到高光谱数据并经过校准之后,就该研究如何提取和利用数据中的有效信息。与传统的全色图像或者多光谱图像不同,高光谱图像中的信息内容并不能直观的表达,需要使用计算机处理来提取它。因此,高光谱遥感研究领域一直致力于开发算法技术来检测、分类、识别、量化和表征所捕获数据中感兴趣的对象和特征。粗略地说,这种处理一般采用两种方法:物理建模和统计信号处理。当我们将高光谱遥感应用与物体检测和分类问题时,使用统计处理方法或者物理建模和统计信号处理方法相结合的方法是非常有效果的,因为这些方法能够很好的捕获光谱特性中自然和人造变异的随机性,这通常存在于实际图像中,并且难以在物理上建模。许多在通信和雷达信号处理领域中使用的技术为高光谱成像应用开发了许多检测结构化噪声情况下检测信号的新方法。这些方法针对不同的应用环境会变得非常具体,并不能统一的去概述。然而大多数方法都有三个共同的基本功能:
(1)补偿大气和环境的未知影响的方法,以允许由成像光谱仪以某种定量的方式捕获目标物体的光谱辐射率数据,例如其反射率或发射率分布;
(2)图像内统计方差的基础模型,以及将数据拟合到相关模型参数的数学方法;
(3)基于其独特的光谱特性来检测、分类和识别场景中目标物体的一些方法。检测、分类和识别通常基于对光谱数据使用适当统计模型的假设检验。
相关产品
-
高光谱知识:高光谱图像处理技术
高光谱图像处理技术是一种集图像与光谱信息于一体的高分辨率技术,广泛应用于航天、农业、食品安全、医学诊断及工业分类质检等领域,展现出强大的应用潜力和价值。..
-
高光谱成像技术方案怎么选择?
探索高光谱成像技术,精准检测水果品质,从源头把控,让每一颗果实都展现最佳风味!..
-
基于多种光学技术的食品无损检测:保障食品安全质量
随着科技的发展,如今有了更先进的食品检测方法,其中基于光学的不同波段检测方法结合光谱技术大放异彩。这些方法包括可见光、红外、太赫兹以及 X 射线等波段的检测,它..
-
高光谱成像技术在纺织品回收分类中的应用
利用高光谱相机对纺织品进行分类以便回收,在众多节约和减少浪费的努力中,纺织品仍然是最大的挑战之一。只有 15% 被回收和再利用,而其余 85% 最终被填埋。纺织..