高光谱成像的意义
发布时间:2023-05-31
浏览次数:498
高光谱成像是一门使用专用传感器同时捕获多个窄波长数据的学科。
高光谱成像是一门使用专用传感器同时捕获多个窄波长数据的学科。高光谱数据通常表示为图像立方体,其中每个图像代表数十或数百个窄波长范围或光谱带之一。高光谱成像可以测量和分析区域或物体的光谱特征,用于农作物健康评估、环境退化监测和组织病理学等应用。
在哪里使用高光谱成像?
高光谱成像用于遥感、监视、机器视觉和医学成像等应用,主要目的是识别材料和检测物体、异常和过程。例如,遥感中的高光谱成像涉及使用卫星或航拍图像检测和识别矿物、陆地植被和人造结构。
使用基于卫星的高光谱数据,根据物质类型,使用最大丰度分类来识别不同的陆地区域。
在医学成像中,组织表面的高光谱成像分析可以为组织病理学提供有见地的诊断信息。
高光谱图像,通过将光线照射在组织表面并准确测量氧气水平并生成血氧饱和度图而得出,以方便临床研究人员和医生的工作。
高光谱图像处理如何工作?
高光谱成像首先使用高光谱图像传感器捕获一组图像,并将它们表示为三维高光谱数据立方体。然后可以使用各种图像处理算法对该数据立方体进行分析和处理,主要用于涉及分类、光谱匹配和分解的工作流程。
例如,一种常见的高光谱图像处理技术,即最大丰度分类 (MAC),用于根据像素的光谱特征对图像中的像素进行分类,并将它们与对象或区域类(也称为端元类)相关联。
使用具有九个端元类别的高光谱图像的最大丰度分类生成的丰度图:沥青、草地、砾石、树木、彩绘金属板、裸土、沥青、自阻塞砖和阴影。
另一个常见任务涉及使用植被区域高光谱图像的归一化差异植被指数或NDVI值,并对该值应用阈值来衡量该区域植被的相对健康状况。NDVI 值越高,该地区的植被越健康、越茂密。
高光谱成像库包含用于预处理、分析和解释高光谱数据的内置函数。它支持降维、光谱解混、光谱匹配和分类工作流程,包括波段选择、端元提取、丰度图估计和异常检测等技术。
相关产品
-
高光谱知识:高光谱图像处理技术
高光谱图像处理技术是一种集图像与光谱信息于一体的高分辨率技术,广泛应用于航天、农业、食品安全、医学诊断及工业分类质检等领域,展现出强大的应用潜力和价值。..
-
高光谱成像技术方案怎么选择?
探索高光谱成像技术,精准检测水果品质,从源头把控,让每一颗果实都展现最佳风味!..
-
基于多种光学技术的食品无损检测:保障食品安全质量
随着科技的发展,如今有了更先进的食品检测方法,其中基于光学的不同波段检测方法结合光谱技术大放异彩。这些方法包括可见光、红外、太赫兹以及 X 射线等波段的检测,它..
-
高光谱成像技术在纺织品回收分类中的应用
利用高光谱相机对纺织品进行分类以便回收,在众多节约和减少浪费的努力中,纺织品仍然是最大的挑战之一。只有 15% 被回收和再利用,而其余 85% 最终被填埋。纺织..