高光谱成像仪的几种常见分光方式
发布时间:2024-05-11
浏览次数:307
高光谱成像仪也称成像光谱仪,其根据成像原理和工作特点的不同,其分光方式包括棱镜分光、光栅分光和傅里叶分光。本文对高光谱成像仪几种常见的分光方式及不同分光方式的特点做了介绍。
高光谱成像仪也称成像光谱仪,其根据成像原理和工作特点的不同,其分光方式包括棱镜分光、光栅分光和傅里叶分光。本文对高光谱成像仪几种常见的分光方式及不同分光方式的特点做了介绍。
棱镜色散分光:
棱镜分光主要利用棱镜的色散原理,通常用于棱镜材料透过率较高的谱段。由于在红外尤其是中长波红外谱段通过率较高且适合用来制作棱镜的材料并不多,所以棱镜分光主要用于可见光和近红外波段。
棱镜分光技术出现较早,技术较为成熟,原理图如下图所示示。入射狭缝位于准直系统的前焦面上,入射的辐射经准直光学系统准直后,经棱镜色散后由成像系统将光能按波长顺序成像在探测器的不同位置上。棱镜分光优点是光学效率,高,但由于棱镜对于光谱的色散是非线性的,而且会对光学系统引入额外的像差。
光栅衍射分光:
衍射光栅是一种光谱分光元件,其上有规则地配置着大量相等宽度、相等间隔的小狭缝。单个狭缝引起一个衍射条纹,并且从各个狭缝出射的相干波还会发生干涉,在光栅光谱仪的焦面上形成一种组合的干涉-衍射条纹,条纹极大位置与波长有关,因而光栅可以作光谱分光系统的衍射分光元件。衍射光栅按工作原理可以分为透射型和反射型,按照面型又可以分为平面、凹面和凸面光栅。
在准直光束中使用衍射光栅的成像光谱仪技术已经得到了广泛的应用,而衍射光栅同时也可以在发散光束中使用来达到分光目的。在这种方法中,从狭缝入射的光不需准直系统准直而直接入射到衍射光栅上,经光栅衍射后可得到目标狭缝的虚像,成像系统将狭缝按波长成像在面阵探测器的不同位置处。下图是凸面光栅分光系统。采用凸面光栅和离轴反射系统具有视场大、光学效率高、像质好的优势,与凹面光栅相比,它具有更好的成像平场度。
与准直光束色散系统相比,在发散光束中使用曲面光栅的分光系统不仅结构简单、体积小、重量轻、光学效率高、光谱范围受光学材料影响小,而且可以通过选择光栅常数和成像系统的变焦来满足空间和光谱分辨率的要求,并且可以克服准直光束应用方法中像面弯曲的问题。
傅里叶干涉分光:
傅里叶变换光谱仪利用光谱像元干涉图与光谱图之间的傅里叶变换关系,通过测量干涉图和对干涉图进行傅里叶变换来获得物体的光谱信息。光谱像元干涉图的获取方法与技术是傅里叶变换光谱学研究的核心问题之一,决定了傅里叶变换光谱仪的使用范围和能力。目前,遥感成像傅里叶变换光谱学中,用于获取地物光谱像元干涉图的方法主要有三种:迈克尔逊干涉法、三角共路干涉法和双折射干涉法。迈克尔逊干涉法是建立在具有一个不动镜和一个动镜的迈克尔逊干涉仪基础上,它可实现相当高精度的光谱测量,但对扰动比较敏感,对机械扫描精度要求也高,因此仪器结构庞大、成本高。
傅里叶干涉分光具有多通道,高光通量,高输出的优点,在同等情况下傅立叶变换光谱仪的光输出通量要比其他类型的光谱仪大得多。虽然傅立叶光谱仪的信噪比比常规光谱仪有一定提高,但也存在着许多缺点,如:a)内部扫描镜的运动需要较高的精度,机械加工和调装比较困难,对外界的震动敏感运动器件的存在会显著的减少仪器的寿命。b)即使是不存在内部扫描镜的静态傅立叶光谱仪,存在着对平台的姿态稳定性要求高。
相关产品
-
高光谱知识:高光谱图像处理技术
高光谱图像处理技术是一种集图像与光谱信息于一体的高分辨率技术,广泛应用于航天、农业、食品安全、医学诊断及工业分类质检等领域,展现出强大的应用潜力和价值。..
-
高光谱成像技术方案怎么选择?
探索高光谱成像技术,精准检测水果品质,从源头把控,让每一颗果实都展现最佳风味!..
-
基于多种光学技术的食品无损检测:保障食品安全质量
随着科技的发展,如今有了更先进的食品检测方法,其中基于光学的不同波段检测方法结合光谱技术大放异彩。这些方法包括可见光、红外、太赫兹以及 X 射线等波段的检测,它..
-
高光谱成像技术在纺织品回收分类中的应用
利用高光谱相机对纺织品进行分类以便回收,在众多节约和减少浪费的努力中,纺织品仍然是最大的挑战之一。只有 15% 被回收和再利用,而其余 85% 最终被填埋。纺织..